Modulation of Ocular Surface Glycocalyx Barrier Function by a Galectin-3 N-terminal Deletion Mutant and Membrane-Anchored Synthetic Glycopolymers

نویسندگان

  • Jerome Mauris
  • Flavio Mantelli
  • Ashley M. Woodward
  • Ziyhi Cao
  • Carolyn R. Bertozzi
  • Noorjahan Panjwani
  • Kamil Godula
  • Pablo Argüeso
چکیده

BACKGROUND Interaction of transmembrane mucins with the multivalent carbohydrate-binding protein galectin-3 is critical to maintaining the integrity of the ocular surface epithelial glycocalyx. This study aimed to determine whether disruption of galectin-3 multimerization and insertion of synthetic glycopolymers in the plasma membrane could be used to modulate glycocalyx barrier function in corneal epithelial cells. METHODOLOGY/PRINCIPAL FINDINGS Abrogation of galectin-3 biosynthesis in multilayered cultures of human corneal epithelial cells using siRNA, and in galectin-3 null mice, resulted in significant loss of corneal barrier function, as indicated by increased permeability to the rose bengal diagnostic dye. Addition of β-lactose, a competitive carbohydrate inhibitor of galectin-3 binding activity, to the cell culture system, transiently disrupted barrier function. In these experiments, treatment with a dominant negative inhibitor of galectin-3 polymerization lacking the N-terminal domain, but not full-length galectin-3, prevented the recovery of barrier function to basal levels. As determined by fluorescence microscopy, both cellobiose- and lactose-containing glycopolymers incorporated into apical membranes of corneal epithelial cells, independently of the chain length distribution of the densely glycosylated, polymeric backbones. Membrane incorporation of cellobiose glycopolymers impaired barrier function in corneal epithelial cells, contrary to their lactose-containing counterparts, which bound to galectin-3 in pull-down assays. CONCLUSIONS/SIGNIFICANCE These results indicate that galectin-3 multimerization and surface recognition of lactosyl residues is required to maintain glycocalyx barrier function at the ocular surface. Transient modification of galectin-3 binding could be therapeutically used to enhance the efficiency of topical drug delivery.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Association of cell surface mucins with galectin-3 contributes to the ocular surface epithelial barrier.

Maintenance of an intact mucosal barrier is critical to preventing damage to and infection of wet-surfaced epithelia. The mechanism of defense has been the subject of much investigation, and there is evidence now implicating O-glycosylated mucins on the epithelial cell surface. Here we investigate a new role for the carbohydrate-binding protein galectin-3 in stabilizing mucosal barriers through...

متن کامل

Binding of transmembrane mucins to galectin-3 limits herpesvirus 1 infection of human corneal keratinocytes.

Epithelial cells lining mucosal surfaces impose multiple barriers to viral infection. At the ocular surface, the carbohydrate-binding protein galectin-3 maintains barrier function by cross-linking transmembrane mucins on the apical glycocalyx. Despite these defense mechanisms, many viruses have evolved to exploit fundamental cellular processes on host cells. Here, we use affinity assays to show...

متن کامل

Comparison of the Transmembrane Mucins MUC1 and MUC16 in Epithelial Barrier Function

Membrane-anchored mucins are present in the apical surface glycocalyx of mucosal epithelial cells, each mucosal epithelium having at least two of the mucins. The mucins have been ascribed barrier functions, but direct comparisons of their functions within the same epithelium have not been done. In an epithelial cell line that expresses the membrane-anchored mucins, MUC1 and MUC16, the mucins we...

متن کامل

Functions of MUC16 in corneal epithelial cells.

PURPOSE The membrane-associated mucin MUC16, a heavily O-glycosylated transmembrane protein, is expressed by the ocular surface epithelia and localized on the tips of the surface microplicae. Although its functions in the ocular surface glycocalyx are unknown, it is thought that MUC16 provides a disadhesive barrier to the epithelial membrane. Two other membrane-associated mucins expressed by oc...

متن کامل

The NH2 terminus of galectin-3 governs cellular compartmentalization and functions in cancer cells.

Galectin-3 is a member of the beta-galactoside-binding protein family shown to be involved in tumor progression and metastasis. It has a unique primary structure consisting of three domains: a 12-amino acid leader sequence containing a casein kinase I serine phosphorylation site, which is preceded by a collagenase-sensitive Pro-Gly-rich motif, and a COOH-terminal half encompassing the carbohydr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013